Incremental Learning of Auto-Association Multilayer Perceptrons Network
نویسنده
چکیده
This paper introduces a new algorithm to reduce the time of updating the weights of auto-association multilayer perceptrons network. The basic idea is to modify the singular value decomposition which has been used in the batch algorithm to update the weights whenever a new row is added to the input matrix. The computation analysis and the experiments show that the new algorithm speeds up the implementation about 5-8 times.
منابع مشابه
Multilayer perceptron architectures for data compression tasks
Different kinds of Multilayer Perceptrons, using a back-propagation learning algonthm, have been used to perform data compression tasks. Depending upon the architecture and the type of problern learned to solve ( classification or auto-association), the networks provide different kinds of dimensionality reduction preserving different properties of the data space. Some experiments show that usmg...
متن کاملDiscrete All-positive Multilayer Perceptrons for Optical Implementation Discrete All-positive Multilayer Perceptrons for Optical Implementation
All-optical multilayer perceptrons diier in various ways from the ideal neural network model. Examples are the use of non-ideal activation functions which are truncated, asymmetric, and have a non-standard gain, restriction of the network parameters to non-negative values, and the limited accuracy of the weights. In this paper, a backpropagation-based learning rule is presented that compensates...
متن کاملLimited Precision Incremental Communication: Error Analysis
The eeects of limited precision incremental communication method on the convergence behavior and performance degradation of multilayer perceptrons are investigated. The nonlinear eeects of representing the incremental values with reduced (limited) precision on the commonly used error backpropagation training algorithm are analyzed. It is shown that the small perturbation in the input(s)/output ...
متن کاملAn Incremental Bayesian Approach for Training Multilayer Perceptrons
The multilayer perceptron (MLP) is a well established neural network model for supervised learning problems. Furthermore, it is well known that its performance for a given problem depends crucially on appropriately selecting the MLP architecture, which is typically achieved using cross-validation. In this work, we propose an incremental Bayesian methodology to address the important problem of a...
متن کاملAn Incremental Neural Network Construction Algorithm for Training Multilayer Perceptrons
The problem of determining the architecture of a multilayer perceptron together with the disadvantages of the standard backpropagation algorithm, directed the research towards algorithms that determine not only the weights but also the structure of the network necessary for learning the data. We propose a Constructive Algorithm with Multiple Operators using Statistical Test (MOST) for determini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 3 شماره
صفحات -
تاریخ انتشار 2006